

4COM Segment type LCD Driver

1 Description

The CN9001C4S36 is a segment-type LCD driver chip with a duty cycle of 1/4, capable of driving up to 144 segments. This device incorporates a low-power design, enabling it to achieve ultra-low power consumption and reduce power loss from the power supply.

2 Features

- Low power consumption design, 6uA current at typical condition
- The display mode options include dynamic 1/2and1/3bias voltages, as well as a 1/4duty cycle mode, supporting a maximum of 144 segments.
- The LCD driver chip is integrated with buffer amplifiers.
- supports both register read and display RAM functions.
- incorporates an internal OSC circuit and features a blinking function.
- Integrated Power-on Reset Circuit
- No external component required
- includes an I2C interface
- Compatible with TTL/CMOS
- High EMC immunity

3 Key Specifications

- Supply Voltage Range (VDD): 2.5V to 5.5V
- Supply Voltage Range (VLCD): 0V to (VDD-2.4)V
- Operating Temperature Range: -40°C to +105°C
- Frame Rate (fclk): 80Hz (Typ))

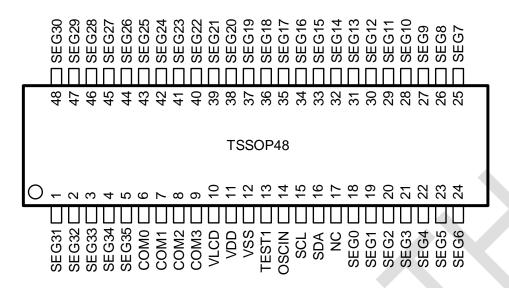
4 Applications

- Home electrical appliance
- Meter equipment et
- Toys
- PDA
- Clocks

5 Ordering information

Product Number	Package	Quantity/Tape
CN9001C4S36	TSSOP48	3500/Reel

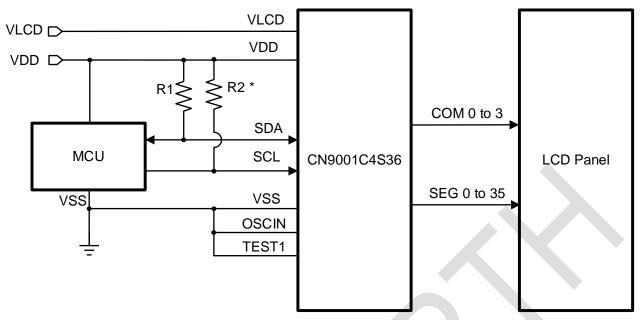
6 Marking


Product Number	Marking
CN0004C4C2C	CN9001C4S36
CN9001C4S36	AYYWW

Note: YY=Year WW=Week.

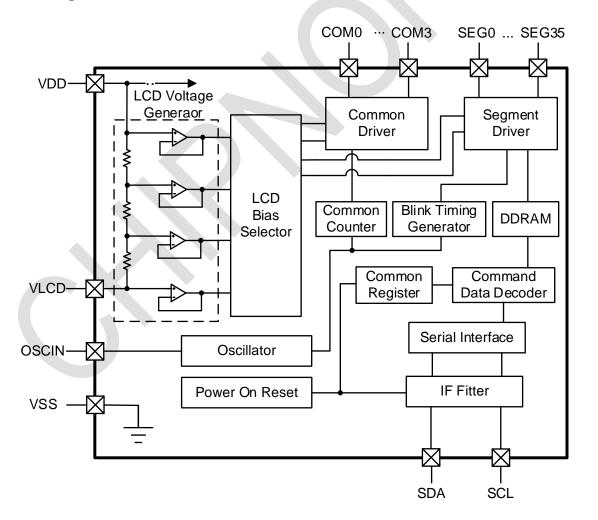
Green (RoHS & HF): CHIPNORTH defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your CHIPNORTH representative directly. Moisture sensitivity level(MSL):3

7 Pinout



8 Pin Descriptions

Pin Name	I/O	Pin No.	Descriptions
NC	-	17	Connect to GND
SDA	I/O	16	2-line serial data input and output
SCL	1	15	2-line serial clock input
OSCIN	,	14	External clock input. When using the internal clock, this
OSCIN	l l	14	pin should be grounded.
TEST1	1	13	Test input pin 1, connect to ground.
VSS	1	12	GND
VDD	1	11	Power supply for logic
VLCD	1	10	The default LCD drive voltage is set to a low level
COM 0~3	0	6~9	COMMON driver output for LCD
SEG 0~35	0	1 ~ 5, 18 ~ 48	SEGMENT driver output for LCD



9 Typical Application

Note: * R2 is optional.

10 Block Diagram

11 Specifications

11.1 Absolute Maximum Ratings

(Vss=0V)

Parameter	Symbol	Rating	Units	Remarks
Power Supply Voltage	V _{DD}	-0.3 to +6.5	V	Power supply
Power Supply Voltage1	V _{LCD}	-0.3 to VDD-2.4	V	LCD drive voltage
Input Voltage Range	VIN	-0.3 to VDD+0.3	V	
Soldering Temperature	T _{lead}	260 (soldering,10s)	°C	
Operational Temperature Range	Topr	-40 to +105	°C	
Storage Temperature Range	T _{stg}	-55 to +150	°C	

Note: Operating beyond the absolute maximum rated values may result in IC damage.

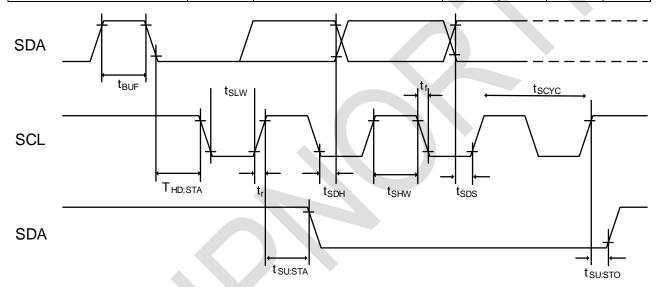
11.2 Recommended Operating Conditions

(Ta = +25°C, VSS = 0V, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Power Supply Voltage	V_{DD}	2.5	-	5.5	V	Power supply
Power Supply Voltage1	V _{LCD}	0	-	VDD-2.4V	V	LCD drive voltage

Note: Please use with VDD-VLCD \geq 2.5V.

11.3 Electrical Characteristics


DC Characteristics (VDD = 2.5V to 5.5V, VSS = 0V, Ta = -40°C to +105°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
"H" Level Input Voltage	V _{IH}		1.4	-	V_{DD}	V
"L" Level Input Voltage	V _{IL}		Vss	-	0.4	V
"H" Level Input Current	Іін		-	-	1	μΑ
"L" Level Input Current	I⊫		-1	-	-	μΑ
SDA "L" Level Output Voltage	Vol_sda	ILOAD = -3mA	0	-	0.4	V
COM/SEG ON Resistance	Ron	$I_{LOAD} = \pm 10 \mu A$	-	3	-	kΩ
VLCD Voltage	V _{LCD}	V _{DD} -V _{LCD} ≥2.5V	0	-	V _{DD} -2.4	V
Standby Current	I _{DD1}	Display off, Oscillation off	-		1	μΑ
		VDD=3.3V, Ta=25°C, SR = Power				
Operating Current	I _{DD2}	save mode1, FR = Power save	-	6	20	μΑ
		mode1, 1/3bias, Frame inversion				

11.4 MPU Interface Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input Rise Time	tr	-	-	-	0.3	μs
Input Fall Time	t _f	-	1	1	0.3	μs
SCL Cycle Time	tscyc	-	2.5	ı	-	μs
"H" Level SCL Pulse Width	tshw	-	0.6	-	-	μs
"L" Level SCL Pulse Width	tsuw	-	1.2	1	-	μs
SDA Setup Time	t _{SDS}	-	100	-	-	ns
SDA Hold Time	tsDH	-	100	-	-	ns
Bus Free Time	t _{BUF}	-	1.3	1	-	μs
START Condition Hold Time	t _{HD;STA}	-	0.6	1	-	μs
START Condition Setup Time	tsu;sta	-	0.6	-	-	μs
STOP Condition Setup Time	tsu;sто	-	0.6	-	1	μs

2-line serial interface timing

11.5 Oscillation Characteristics

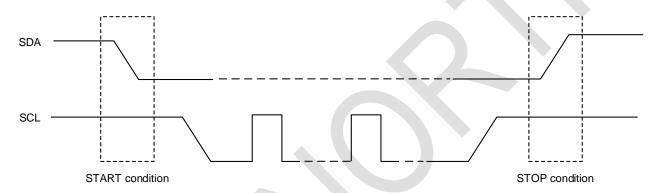
(VDD = 2.5V to 5.5V, VSS = 0V, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Frame Frequency	fclk	56	80	104	Hz	FR= Normal mode

12 Command Registers Description

	D7	D6	D5	D4	D3	D2	D1	D0
ADSET	С	0	0			P[4:0]		
DISCTL	С	0	1	FR[1:0]	LF	SR[1:0]
MODSET	С	1	0	/	EN	DR	/	/
ICSET	С	1	1	0	1	P[5]	RST	ОС
BLKCTL	С	1	1	1	0		BLK[2:0]	
APCTL	С	1	1	1	1	1	AON	AOFF

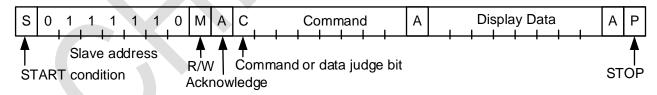
Name	Default	Description
		DDRAM address. The address can be set in the range of 00 to 23 (Hex).
P[5:0]	000000	Addresses beyond this range are not allowed, and will be set to "000000".
		Note: Bit P[5] is in the "ICSET" command.
		To conserve power, you can adjust the frame rate.:
		00, 80Hz, Normal mode
FR[1:0]	00	01, 70Hz, Power save mode1
		10, 60Hz, Power save mode2
		11, 50Hz, Power save mode3
		Set Line or Frame inverse mode.
LF	0	0, Line inverse
		1, Frame inverse
		Set internal bias current for Power Saving.
		00, *0.5, Power Save Mode 1
SR[1:0]	10	01, *0.67, Power Save Mode 2
		10, *1.0, Normal Mode, default value.
		11, *1.8, High Power Mode
		Setting Bias Mode:
DR	0	0, Select 1/3 Bias.
		1, Select 1/2 Bias.
EN	0	Disabling all blocks on the chip; all COM/SEG pins will be pulled to GND.
LIV		0: Disabled. 1: Enabled.
		Setting '1' resets all command registers in this table but does not reset display data in
RST	0	DDRAM.
		Note: Do not simultaneously set P[5] and OC during reset.
		Setting OSC Mode:
OC	0	0, Select internal clock. (Connect OSCIN pin to VSS)
		1, Select external clock source. (Connect OSCIN pin to external clock source)
		Config the blink frequency:
		000, No blink. 100, 0.3Hz.
BLK[2:0]	000	001, 0.5Hz. 101, 0.2Hz.
		010,1.0Hz. 110,No blink.
		011, 2.0Hz. 111, No blink.



		Controlling pixel display:
		00, Normal mode.
AONI		01, All pixels OFF. Turn off all pixels (independent of DDRAM data).
AON AOF	00	10, All pixels ON. Turn on all pixels (independent of DDRAM data).
AUF		11, Same as '01'. Turn off all pixels (independent of DDRAM data).
		The AON/AOF command is only effective when the display is enabled (EN=1) and will not
		alter the DDRAM data.

13 Function Description

13.1 Command and Data Transfer Method


When transmitting commands or data through the 2-wire serial interface, this device must generate "start condition" and "stop condition" states. When SCL is held high and SDA transitions from a high to a low level, it is considered a "start condition" .When SCL is held high and SDA transitions from a low to a high level, it is considered a "stop condition".

Start and Stop Conditions Diagram

Method of how to transfer command and data is shown as follows.

- 1. Generate "START condition".
- 2. Issue Slave address 0x7C.
- 3. Transfer command.
- 4. Transfer display data.
- 5. Generate "STOP condition".

13.1.1 Acknowledge

When transfer data, always need Acknowledge.

Data format is 8bits and return Acknowledge after transfer 8bits data.

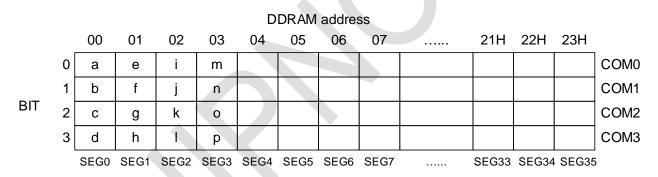
When SCL 8th= "L" after transfer 8bit data (Slave Address, Command, Display Data), output "L"and open SDA line.

When SCL 9th= "L", stop output function. (As Output format is NMOS-Open-Drain, can't output "H" level.) If no need Acknowledge function, please input "L" level from SCL 8th= "L" to SCL 9th= "L".

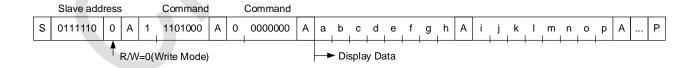
13.1.2 Command Transfer Method

After generating the "start condition", send the slave address "01111100" (write mode), and then immediately transmit the command. The most significant bit (MSB), known as the "command or data indicator bit", defines whether the following byte is a command or data. When the "command or data indicator bit" is set to "1", the next byte is treated as a command. When the "command or data indicator bit" is set to "0", the next byte is considered display data. Setting this flag is crucial because it instructs the device on how to interpret the subsequent bytes as either commands or data.

|--|

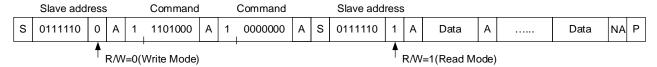

Once you enter the display data transmission state, no commands can be input. To re-enter a command, you must generate a "start condition" again. If a "start condition" or "stop condition" is entered during the command transmission process, the command will be canceled. Please input the "slave address" in the first data transmission following the "start condition", and it will then be in command input mode.

When the slave address in the first data transmission cannot be recognized, the chip will not respond, and the next transmission will be invalid. When data transmission is in an invalid state and a "start condition" is sent again, it will return to a valid state.


13.1.3 Write Display Data and Transfer Method

Set R/W bit to "0" to come into write mode.

This device has Display Data RAM (DDRAM) of 36x4=144bit.

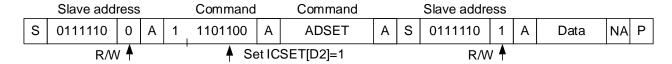

8 bit data will be stored in DDRAM. The address to be written is the address specified by Address set command, and the address is automatically incremented in every 4bit data.

13.1.4 Read Display Data and Transfer Method

The read mode sequence is shown below.

During read mode, the display data can be read from the DDRAM through the SDA line. The data is outputted serially with SCL input. A write sequence is done first to identify the DDRAM address to be accessed. Then a "START condition" is transmitted again before entering the actual reading of DDRAM data and the Slave Address follows. The display data is outputted continuously afterwards. If no DDRAM address was specified right before the DDRAM read, the output during read mode will be from the current DDRAM address.

The DDRAM address will increment after every 8-bits of output data. An Acknowledge after every 8-bit of data outputted should be received from the master receiver. This will signal the device that it should continue to output the display data and increment the address. When Non-Acknowledge is received, the device will release the SDA line and the master can then transmit the "STOP condition". The read mode will be finished once the "STOP condition" is received.


An example of the display data read sequence is shown below.

13.1.5 Read Command Register and Transfer Method

The command registers can be read during read mode. The sequence for the command register read is shown below and is similar to the display data read sequence.

The command register addresses are as follows. In this mode, you can read the following register settings.

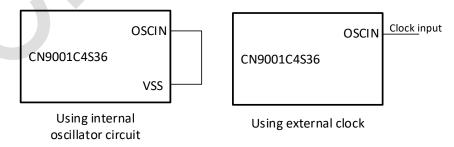
Register	D7	D6	D5	D4	D3	D2	D1 D0		address
REG1	0	0	DR	OC	RST		BLK[2:0]	24h	
REG2	FR[1:0]	SR[[1:0]	LF	EN AON AOFF			25h

13.1.6 Set Address Range

Address map of RAM & register

Write Mode				ADSET	ICSET							
RAM address	D7	D6	D5	P[4:0]	D7	D6	D5	D4	D3	P[5]*	RST	ОС
0000 0000 to 0001 1111	0	0	0	0 0000 to 1 1111	1	1	1	0	1	0	0	0
0010 0000 to 0010 0011	0	0	0	0 0000 to 0 0011	1	1	1	0	1	1	0	0

Read Mode				ADSET		ICSET						
RAM address	D7	D6	D5	P[4:0]	D7	D6	D5	D4	D3	P[5]*	RST	ОС
0000 0000 to 0001 1111	0	0	0 <	0 0000 to 1 1111	1	1	1	0	1	0	0	0
0010 0000 to 0010 0101	0	0	0	0 0000 to 0 0101	1	1	1	0	1	1	0	0


^{*}Note: The setting of the third bit P[5] in ICSET.

13.2 OSCILLATOR

Internal oscillation circuit or an external clock supply can be used as clock source for both logic and analog circuits.

This device has internal oscillator circuit. When you use internal oscillation circuit, please connect OSCIN to VSS.

Note: Please set IC Operation (ICSET) command and connect OSCIN to external clock in using external clock.

13.3 LCD Driver Bias Circuit

This device generates LCD driving voltage by integrated Buffer AMP.

And this device achieves ultra low power consumption.

- 1/3 and 1/2Bias can set in Mode Set (MODSET) command.
- Line and frame inversion mode can be set in Display control (DISCTL) command.

13.4 Blinker Timing Generator

This device has Blinking function.

Blink control (BLKCTL) command put this device into Blink mode.

Blink frequency varies widely by characteristic of f_{CLK} in using internal oscillation circuit.

Refer to "Oscillation Characteristics" for characteristic of f_{CLK}.

13.5 Initialize Sequence

Please follow sequence below after Power-ON to set this device to initial condition.

```
Power ON

STOP condition

START condition

Usua Slave address
```

Execute Software Reset by ICSET command

Note that each register value, DDRAM address, and DDRAM data are random after power ON.

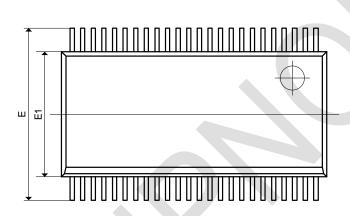
13.6 Reset (initial) condition

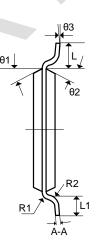
Initial condition after execute Software Reset is as follows.

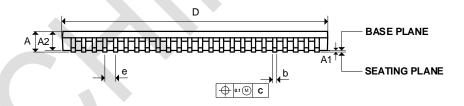
- (a) Display is OFF. (All SEG & COM status is GND.)
- (b) DDRAM address is initialized (DDRAM Data is not initialized)
- (c) All registers are restored to their initial default values.

14 Example boot sequence

No.	Input	D7	D6	D5	D4	D3	D2	D1	D0	Descriptions
1	Power ON									VDD=0 to 5V(tR=0.1ms)
2	wait 100µs									Initialize IC
3	Stop									Stop condition
4	Start									Start condition
5	Slave address	0	1	1	1	1	1	0	0	Issue Slave address
6	ICSET	1	1	1	0	1	0	1	0	Software Reset
7	MODSET	1	1	0	*	1	0	*	*	Display ON
8	DISCTL	1	0	1	0	0	0	1	0	Unnecessary when initial value setup
9	ICSET	1	1	1	0	1	*	0	0	RAM MSB address set
10	ADSET	0	0	0	0	0	0	0	0	RAM address set
11	Display Data	*	*	*	*	*	*	*	*	address 00h-01h
	Display Data	*	*	*	*	*	*	*	*	address 02h-03h
	•••									
	Display Data	*	*	*	*	*	*	*	*	address 22h-23h
12	Stop									Stop condition




15 Package Information


TSSOP48

UNIT:mm

SYMBOL	MIN	MAX	SYMBOL	MIN	MAX		
Α		1.2	е	0.5			
A1	0.03	0.13	b	0.17	0.27		
A2	0.824	1.024	R1	0.22TYP			
Е	7.9	8.3	R2	0.22TYP			
E1	6	6.2	A-A	0.12	0.22		
D	12.4	12.6	θ1	12°TYP			
L		1	θ2	12°	TYP		
L1	0.35	0.65	θ3	0°	8°		

16 Important Statement

Chipnorth Electronic Technology (Nanjing) Co., Ltd. and its subsidiaries reserve the right to make modifications, improvements, corrections, or other changes to this document and to any of the products described herein at any time without notice. Chipnorth Electronic Technology (Nanjing) Co., Ltd. disclaims any liability arising out of the use of this document or any of the products described herein; Chipnorth Electronic Technology (Nanjing) Co., Ltd. does not transfer any license to its patents or trademarks or other rights. Any customer or user using this document or any of the products described herein assumes all risk and agrees to hold harmless Chipnorth Electronic Technology (Nanjing) Co., Ltd. and all companies whose products are displayed on Chipnorth Electronic Technology (Nanjing) Co., Ltd. Chipnorth Electronic Technology (Nanjing) Co., Ltd. Chipnorth Electronic Technology (Nanjing) Co., Ltd. makes no warranty and assumes no responsibility for any products purchased through unauthorized sales channels. In the event that a customer purchases or uses a product from Chipnorth Electronic Technology (Nanjing) Co., Ltd. for any unintended or unauthorized use, the customer shall indemnify and hold harmless Chipnorth Electronic Technology (Nanjing) Co., Ltd. and its representatives from and against all claims, damages, and attorney's fees arising from any personal injury or death, directly or indirectly, arising out of or in connection with such purchase or use.